首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3211篇
  免费   158篇
  国内免费   19篇
化学   2488篇
晶体学   28篇
力学   91篇
数学   383篇
物理学   398篇
  2023年   26篇
  2022年   35篇
  2021年   79篇
  2020年   60篇
  2019年   78篇
  2018年   66篇
  2017年   36篇
  2016年   126篇
  2015年   91篇
  2014年   106篇
  2013年   221篇
  2012年   255篇
  2011年   251篇
  2010年   119篇
  2009年   138篇
  2008年   206篇
  2007年   213篇
  2006年   149篇
  2005年   175篇
  2004年   148篇
  2003年   126篇
  2002年   163篇
  2001年   45篇
  2000年   42篇
  1999年   32篇
  1998年   29篇
  1997年   45篇
  1996年   35篇
  1995年   18篇
  1994年   23篇
  1993年   22篇
  1992年   10篇
  1991年   19篇
  1990年   14篇
  1989年   15篇
  1988年   6篇
  1987年   10篇
  1986年   16篇
  1985年   21篇
  1984年   19篇
  1983年   8篇
  1982年   8篇
  1981年   14篇
  1980年   11篇
  1979年   8篇
  1978年   16篇
  1977年   9篇
  1976年   5篇
  1974年   4篇
  1973年   5篇
排序方式: 共有3388条查询结果,搜索用时 15 毫秒
71.
Secondary beta-deuterium kinetic isotope effects have been measured as a function of substrate concentration for recombinant human butyrylcholinesterase-catalyzed hydrolysis of acetyl-L3-thiocholine (L = 1H or 2H). The isotope effect on V/K is inverse, D3V/K = 0.93 +/- 0.03, which is consistent with conversion of the sp2 hybridized carbonyl carbon of the scissile ester bond of the E + A reactant state to a quasi-tetrahedral structure in the acylation transition state. In contrast, the isotope effect on Vmax under conditions of substrate activation is markedly normal, D3(betaVmax) = 1.29 +/- 0.06, an observation that is consistent with accumulation of a tetrahedral intermediate as the reactant state for catalytic turnover. Generally, tetrahedral intermediates for nonenzymatic ester hydrolyses are high-energy steady-state intermediates. Apparently, butyrylcholinesterase displays an unusual ability to stabilize such intermediates. Hence, the catalytic power of cholinesterases can largely be understood in terms of their ability to stabilize tetrahedral intermediates in the multistep reaction mechanism.  相似文献   
72.
2',7'-Difluorofluorescein (Oregon Green 488, OG488) is a novel fluorescein dye derivative which presents important advantages for improving the fluorimetric applications in the biomedical and biochemical sciences. In aqueous solution it displays four prototropic forms, namely cation (C), neutral (N), monoanion (M), and dianion (D). In previous works, we found (J. Phys. Chem. A 2005, 109, 734-747, 2840-2846) that OG488 undergoes excited-state proton transfer reactions, which may affect the results from applications using this dye. We established that the excited-state proton transfer (ESPT) reactions between neutral, monoanionic, and dianionic forms of OG488 are promoted by acetate buffer, and we characterized the ground and excited species involved. We also solved the kinetics of the prototropic reactions using global compartmental analysis. In the present paper, we extend our study on the ESPT reactions of OG488 to acidic media, in which only the three prototropic species cation, neutral, and monoanion coexist. We have solved the kinetics of the three-state ESPT reaction by means of global three-compartmental analysis of a fluorescence decay surface in moderately acidic media (pH between 1.1 and 3.0), recovering the kinetic and spectral parameters of this three-state system. This system is one of the most complex solved to date, due to the strong overlap of the absorption and emission spectra of the neutral and monoanionic forms of OG488. We also found that the cation behaves as "super" photoacid, showing a very high deprotonation rate constant (1.04 x 10(11) s(-1)) and an enhanced acidity. Therefore, we also carried out experiments at very high perchloric acid concentrations, dealing with some other effects which become noteworthy at these [H(+)]. The presence of xanthylium cation quenching due to "free" water molecules, and the reduction in the amount of water clusters acting as proton acceptors, are processes which alter notably the time course of the excited-species in this high [H(+)] range.  相似文献   
73.
Vibrational properties (band position, infrared [IR], and Raman intensities) of C?N stretching mode were studied in 65 gas phase hydrogen‐bonded 1:1 complexes of HCN with OH acids and NH acids using density functional theory (DFT) calculations at the B3LYP‐6‐311++G(d,p) level. Furthermore, general characteristics of the hydrogen bonds and vibrational changes in acids OH/NH stretching bands were also considered. Experimentally observed blue shift of the C?N stretching band promoted by hydrogen bonding, which shortens the triple bond length, is very well reproduced and quantitatively depends on the hydrogen bond length. Both IR and Raman ν(C?N) band intensities are enhanced, also in good agreement with the experimental results. IR intensity increase is a direct function of the hydrogen bond energy. However, the predicted Raman intensity raise is a more complex function, depending simultaneously on characteristics of both the hydrogen bond (C?N bond length) and the H‐donating acid (polarizability). With these two parameters, ν (C?N) Raman intensities of the complexes are explained with a mean error of ±2.4%. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
74.
Partial filling multiple injection affinity capillary electrophoresis (PFMIACE) is used to determine binding constants between vancomycin (Van) from Streptomyces orientalis, teicoplanin (Teic) from Actinoplanes teicomyceticus and ristocetin (Rist) from Nocardia lurida to d-Ala-d-Ala terminus peptides and carbonic anhydrase B (CAB, E.C.4.2.1.1) to arylsulfonamides. Two variations of PFMIACE are described herein. In the first technique, the capillary is partially filled with ligand at increasing concentrations, a non-interacting standard, three or four separate plugs of receptor each separated by small plugs of buffer, a plug containing a second non-interacting standard, and then electrophoresed in buffer. Upon continued electrophoresis, equilibrium is established between the ligand and receptors causing a shift in the migration time of the receptors with respect to the non-interacting standards. This change in migration time is utilized for estimating multiple binding constants (Kb) for the same interaction. In the second technique, separate plugs of sample containing non-interacting standards, peptide one, buffer, and peptide two, were injected into the capillary column. The capillary is partially filled with a series of buffers containing an antibiotic at increasing concentrations and electrophoresed. Peptides migrate through the column at similar electrophoretic mobilities since their charge-to-mass ratios are approximately the same but remain as distinct zones due to the buffer plug between peptides. Upon electrophoresis, the plug of antibiotic flows into the peptide plugs affecting a shift in the migration time of the peptides with respect to the non-interacting standards occurs due to formation of the of the antibiotic-peptide complex. The shift in the migration time of the peptides upon binding to the antibiotic is used for the Scatchard analysis and measurement of a Kb. The PFMIACE technique expands the functionality and potential of ACE as an analytical tool to examine receptor-ligand interactions. In PFMIACE, a smaller amount of sample is required in the assay compared to both conventional ACE and MIACE. Furthermore, a wide array of data is obtained from a single experiment, thus, expediting the assay of biological species.  相似文献   
75.
A new flexible and efficient methodology for the solid-phase synthesis of lipidated peptides has been developed. The approach is based on the use of previously synthesized building blocks and overcomes the limitations of previously reported methods, since long doubly lipidated peptides can be synthesized by using this route. Furthermore, it was thus possible to prepare a large number of N- and H-Ras peptides bearing a wide range of reporter and/or linking groups--efficient tools for the investigation of biological processes. In terms of efficiency and flexibility this solid-phase method is superior to the solution-phase synthesis. It gives pure peptides in multimilligram amounts within a much shorter time and with superior overall yield.  相似文献   
76.
Multiple-injection affinity capillary electrophoresis (MIACE) is used to determine binding constants (K b) between receptors and ligands using as model systems vancomycin and teicoplanin from Streptomyces orientalis and Actinoplanes teichomyceticus, respectively, and their binding to D-Ala-D-Ala peptides and carbonic anhydrase B (CAB. EC 4.2.1.1) and the binding of the latter to arylsulfonamides. A sample plug containing a non-interacting standard is first injected followed by multiple plugs of sample containing the receptor and then a final injection of sample containing a second standard. Between each injection of sample, a small plug of buffer is injected which contains an increasing concentration of ligand to effect separation between the multiple injections of sample. Electrophoresis is then carried out in an increasing concentration of ligand in the running buffer. Continued electrophoresis results in a shift in the migration time of the receptor in the sample plugs upon binding to their respective ligand. Analysis of the change in the relative migration time ratio (RMTR) or electrophoretic mobility (μ) of the resultant receptor–ligand complex relative to the non-interacting standards, as a function of the concentration of ligand yields a value for K b. The MIACE technique is a modification in the ACE method that allows for the estimation of binding affinities between biological interactions on a timescale faster than that found for standard ACE. In addition sample volume requirements for the technique are reduced compared to traditional ACE assays. These findings demonstrate the advantage of using MIACE to estimate binding parameters between receptors and ligands.  相似文献   
77.
Jose DA  Kumar DK  Ganguly B  Das A 《Organic letters》2004,6(20):3445-3448
[structure: see text] Novel colorimetric receptors for selective fluoride ion sensing containing anthraquinone as chromogenic signaling subunit and urea (N,N' '-(9,10-dihydro-9,10-dioxo-1,2-anthracenediyl)bis[N'-phenyl])/thiourea (N,N' '-(9,10-dihydro-9,10-dihydro-9,10-dioxo-1,2-antrhacenediyl)bis[N-phenyl]) binding sites have been reported. These receptors have shown no affinity for other halide ions (Cl-, Br-, and I- ions). Well-defined color change in the visible region of the spectrum was observed upon addition of fluoride ion in DMSO/CH3CN solution of the receptors 1 and 2.  相似文献   
78.
The development of methodologies for the formation of carbon-carbon double bonds could be considered one of the most important challenges in organic synthesis. To this end, beta-elimination reactions in 1,2-difunctionalised substrates have been one of the most important means of generating C=C bonds.This review is intended to highlight the use of SmI2 in beta-elimination procedures, such that the organization of this revision highlights conventional beta-elimination processes which are promoted by samarium diiodide. The synthetic applications of SmI2 will be covered, and 1,2-elimination reactions which are involved in sequential reactions promoted by samarium diiodide, will also be illustrated. These methodologies along with the more recent developments in the area are discussed in this tutorial review.  相似文献   
79.
The water-promoted hydrolysis of a highly twisted amide is studied using density functional theory in conjunction with a continuum dielectric method to introduce bulk solvent effects. The aim of these studies is to reveal how the twisting of the C-N bond affects the neutral hydrolysis of amides. To do so, both concerted and stepwise mechanisms are studied and the results compared to the ones from the hydrolysis of an undistorted amide used as reference. In addition, an extra explicit water molecule that assists in the required proton-transfer processes is taken into account. Our results predict important rate accelerations of the neutral hydrolysis of amides when the C-N bond is highly twisted, the corresponding barrier relaxation depending on the specific reaction pathway and transition state involved. Moreover, our calculations strongly suggest a change in reaction mechanism with degree of amide bond twist, and clearly point to a concerted mechanism at neutral pH for the hydrolysis of highly twisted amides. In addition, the twisting of the amide bond also provokes a higher dependence on an auxiliary water molecule for the concerted mechanism, due to the orthogonality of the lone pair of the nitrogen and the carbonyl pi orbital. There is a direct implication of these findings for biological catalytic mechanism of peptide cleavage reactions that undergoes ground-state destabilization of the peptide.  相似文献   
80.

Caffeine and related xanthines were identified as potent stimulators for the bacterial cellulose production in A. xylinum. These compounds are present in several plants whose infusions are useful as culture-medium supplements for this acetobacterium.

The proposed target for these native purine-like inhibitory substances is the novel diguanyl nucleotide phosphodiesterase(s) that participate(s) in the bacterial cellulogenic complex.

A better understanding of this feature of A. xylinum physiology may facilitate the preparation of bacterial cellulose pellicles, which are applied as a biotechnological tool in the treatment of skin burns and other dermal injuries.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号